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Abstract. The inaccuracy of the diagnosis for Alzheimer’s disease (AD) has made its therapeutic intervention difficult, par-
ticularly early enough to prevent significant neurodegeneration and cognitive dysfunction. Here, we describe a novel, highly
accurate peripheral diagnostic for AD patients based on quantitatively measured aggregation rate of human skin fibroblasts. The
elevated aggregation rate with increasing cell density in AD cases is the basis of this new biomarker. The new biomarker was
successfully cross-validated with two more mature assays, AD-Index, based on the imbalances of ERK1/2, and Morphology,
based on network dynamics, and showed 92% overlap. A significant number of cases tested with this new biomarker were
freshly obtained (n=29), and 82% of the cases are hyper-validated cases, i.e., autopsy and/or genetically confirmed AD or
non-Alzheimer’s disease demented patients (Non-ADD) and non-demented age-matched controls. Furthermore, we show that
by using a simple majority rule, i.e., two out of the three assays have the same outcome, we significantly increase the agreement
with clinical AD diagnosis (100%). Based on the high accuracy of this strategy, the biomarker profile appears to accurately

identify AD patients for therapeutic intervention.
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INTRODUCTION

We have developed three independent peripheral
diagnostic assays for Alzheimer’s disease (AD) using
skin fibroblasts; AD-Index [1-4], Morphology [5], and
PKCe, which were previously tested with 139 cases out
of which more than 80% were hyper-validated cases,
i.e., autopsy and/or genetically confirmed AD or non-
Alzheimer’s disease demented patients (Non-ADD)
and non-demented age-matched controls (AC). One
of these three assays, the morphology assay, is based
on abnormal aggregation of skin fibroblasts harvested
from AD patients.

Fibroblast aggregation is correlated with intercellu-
lar adhesiveness [6]. In disease cases, the adhesiveness
of fibroblasts is abnormal. For example in Duchenne
muscular dystrophy (DMD), fibroblast adhesiveness
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is reduced to 40% from that of normal cells [6],
while fibroblasts from fetal Down syndrome show an
increased adhesiveness, therefore increased aggrega-
tion [7]. In the case of Down syndrome, the increase
adhesiveness of lung and cardiac fibroblasts during
organogenesis could explain malformations such as
pulmonary hypoplasia and congenital heart defects [7].
Down syndrome patients who live long enough will
develop AD. Therefore an abnormal fibroblast aggre-
gation is expected and was reported in AD patients
[5].

A systematic analysis of fibroblast aggregation in
DMD patients revealed that a small subpopulation of
cells is very adhesive and formed a small number of
large aggregates [8]. The large fibroblast aggregates
specific to DMD were not present in age-matched con-
trols and were correlated to intercellular adhesiveness
[8]. In our previous studies of human dermal fibrob-
last aggregation [5], we also observed large aggregates
for AD patients when compared with age-matched
controls for which the cellular aggregation was more
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evenly distributed. We quantified cell aggregation by
the area of the unit aggregate, which is the average
area per number of aggregates (A/N) at 48 hours, after
plating on Matrigel.

The complex kinetics of normal and transformed
BHK?21 fibroblast aggregation in shaking suspen-
sion suggests that the polyoma-transformed fibroblasts
have a lower adhesiveness [9]. Furthermore the
light trypsin/EDTA treatment produced an opposite
kinetic of aggregation when compared with the heavy
trypsin/EDTA treatment [9].

One interesting hypothesis arising from colloidal
science suggests that the initial particle size distribu-
tion of coagulating hydrosols tend to preserve their
shape [10]. Similarly in the field of cell biology, it has
been suggested that if the initial cell size and shape is
different in normal versus transformed/diseased cells,
this difference tends to be conserved during cellular
aggregation [9]. More interestingly, it has been sug-
gested that the built-in differences in cell morphology
population will result in differences in aggregation
kinetics [9].

Human dermal fibroblast aggregation on Matrigel
was studied in comparison with human umbilical vein
endothelial cells [11], and it has been shown that both
types of cells aggregate and form cord networks which
mimic only partially an angiogenic phenomenon. We
previously reported that these spatiotemporal networks
have a different dynamic in skin fibroblast from AD
patients when compared with skin fibroblasts from age-
matched controls [5]. It has beenreported that Matrigel
stimulate differentiation of Sertoli cells [12] and mouse
kidney cells [13].

The aggregates of human dermal fibroblasts were
constructed on purpose in rotational shaking with
non-treated dishes to accelerate wound healing [14,
15]. The aggregate formation was enhanced by the
medium supplements such as insulin, dexametha-
sone, ascorbic acid, and basic fibroblast growth
factors, which potentiate secretion of extracellular
matrices, and promote cell-cell interaction [14, 15].
The working hypothesis is that high density cell
aggregates increase cell-cell interaction and there-
fore increase the probability of further accelerating
skin wound healing [8, 9]. Interestingly, these stud-
ies too pointed that the lack of aggregation is
due to high adhesiveness of fibroblasts, indicating
that by reducing the adhesiveness by using plas-
tic dishes for non-adhesive cells the aggregation
increased.

The increased cellular aggregation due to reduced
adhesiveness was also reported for diseased cells from

Table 1
Possible states for the sum of the normalized values of the three
biomarkers by the cutoff values. U, uncertain state which is when
the value of the biomarker is equal with the cutoff value

Aggregation | AD-Index | Aggregation Area | Sum Diagnosis
Rate per Number
1 -1 -1 -1 AC/Non-ADD
-1 -1 U* -2 AC/Non-ADD
-1 -1 -1 -3 AC/Non-ADD
+/-1 U U** 2U Not diagnosed
U U U 3U Not diagnosed

*Here we refer to a situation where we have one uncertain biomarker
out of the three. **Here we refer to a situation where we have two
uncertain biomarkers out of the three. By this measure, S, there
are three states: 1) AD for S=1, 2,3 in green; 2) AC/Non-ADD
for S=-1,-2,-3 in red; and 3) Not diagnosed for two (2U) or three
(3U) uncertain i.e., cutoff values, in black. Similarly a simple Excel
function, count if can be used to count the positive values, +1, or
the negative values, —1. If the result of the count if for the +1 are
>=2 than that case is an AD. If the result of the count if for the +1
is <2 than that case is an AD/Non-ADD (Table 2). If the case has
two or more uncertain (U), i.e., cutoff values than that case cannot
be diagnosed. Similarly the count can be done for the —1 values but
this will be just redundant.

DMD [6] or AD [5]. Furthermore, increased cellu-
lar aggregation is promoted by increasing cell-cell
interaction when adding medium supplements such
as insulin, dexamethasone, ascorbic acid, and basic
fibroblast growth factors [14, 15] or by adding of water-
soluble conjugates of cell adhesion peptides containing
a sequence of three amino acids, Arg-Gly-Asp (RGD),
and poly (ethyleneglycol) (PEG) [16].

Here we report an elevated aggregation rate with
increasing cell density in fibroblasts from AD patients
when compared with AC and Non-ADD patients. Fur-
thermore, we suggest that the rate of aggregation could
be used as a new biomarker for screening AD patients.

Analysis of 38 cases, with 9 banked (Supplementary
Table 1) and 29 (Supplementary Table 2) cases from
the clinic, suggest a clear separation between AD and
AC/Non-ADD when using the aggregation rate as a
biomarker.

The analysis of the probability distributions of the
slope and intercept for 35 samples suggests that the
probability distribution for the AC group (n=27) is
narrower and resides on the tail of the probability dis-
tribution of the AD group (n=8) which is wider. This
indicates that for larger data sets the estimated over-
lapping probability for the two groups, AD and AC, is
less than 10%.
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Table 2
Possible states for the count if (>0/<0) of the normalized values of the three biomarkers by the cutoff values
Aggregation AD-Index |Aggregation Area| Countif | Count if <0 Diagnosis
Rate per Number >0 (redundant)
1 -1 -1 1 2 AC/Non-ADD
-1 -1 U 2 AC/Non-ADD
-1 -1 -1 3 AC/Non-ADD
+/-1 U U NA NA Not diagnosed
U U U NA NA Not diagnosed

U =uncertain state which is when the value of the biomarker is equal with the cutoff value. By this
measure, sum of the binary values, there are three states: 1) AD for count if (>0)=2, 3 in green; 2)
AC/Non-ADD for count if (>0)=0, 1 in red; and 3)Not diagnosed for two or more uncertain, i.e., cutoff
values in black. The results for the count if (>0), gray background in Table 2 are shown in the Fig. 8C, D.

The trend of higher rate of change of cell aggrega-
tion for AD cases when compared with AC/Non-ADD
cases is in line with our previous studies in which we
reported that AD cells are consistently bigger and less
adhesive in average, than the AC/Non-ADD cells.

The new biomarker quantifying the aggregation rate
was cross-validated with the two more mature assays,
AD-Index, based on the imbalance of ERK1/2, and
Morphology, based on network dynamics (A/N). The
cross-validation resulted in 92% overlap with each of
the two assays.

Furthermore, we report here that a simple majority
rule, i.e., two out of the three assays give the same out-
come, increases the agreement with clinical diagnosis
to 100%.

MATERIALS AND METHODS
Banked and fresh cell lines used in this study

We carried out experiments using skin fibroblast
samples from 38 patients, with 9 banked cases (See
Supplementary Table 1) provided by the Coriell Insti-
tute for Medical Research (Camden, NJ), and 29 cases
(See Supplementary Table 2) from the clinic provided
by Marshall University (Huntington, WV). We plated
the fibroblast on a thick layer (~1.8 mm) of 3-D matrix
(Matrigel, BD Biosciences, San Jose, CA) on 12 well
plates [5]. The available patient information is posted
on Coriell web site (http://ccr.coriell.org/). The cell
lines analyzed (n =38) were for the most part (29/38)
from the clinic serving also as a validation for the
previous studies with banked samples [5]. The age-
matched control (AC) cases chosen for this paper were

not demented at the date of skin biopsy extraction. All
the samples were taken antemortem. The banked skin
fibroblast cells were frozen stocks under liquid nitro-
gen. Primary cultures were established after thawing
those frozen samples and followed through successive
passaging [1-5]. All cell lines used in this study were
primary cell lines and were not treated in order to be
immortalized.

Freshly taken fibroblasts were obtained as follows.
Punch-biopsies (2-3 mm, upper arm) of skin tissues
from patients and controls were obtained by qualified
personnel under the supervision of Dr. Shirley Neitch
with the IRB approval of Marshall University (Hunt-
ington, WV). All patients (or relatives/representatives)
signed informed consent forms. The clinical diagnosis
was conducted by Dr. Neitch. The Institutional Review
Board at Marshall University approved the procedure.
The method of isolating fibroblasts from skin biopsies
was followed as described elsewhere [1]. For the tests
described here, we used cells with passages between 5
and 15.

The initial cell density was controlled to be 50
cells/mm? and was homogenized with 1.5 ml Dulbecco
Modified Eagle Medium with 10% fetal bovine serum
and 1% penicillin/streptomycin for each well. Cells
were kept in a CO, water-jacket incubator (Forma Sci-
entific) up to 7 days after plating.

Image capture

Images of the cellular networks were captured
with an inverted microscope (Westover Digital AMID
Model 2000, Westover Scientific, Bothell WA), con-
trolled by a computer via an image acquisition software
(Micron 2.0.0), using a 10x and a 4x objective. We
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captured five to nine images per well and typically
we used four wells per cell line. In the first day we
acquired images at 30 min after seeding, the second
day at 24 h, and the third day at 48 h. Images were pro-
cessed with ImagelJ, a freely available software from
NIH (http://rsbweb.nih.gov/ij/).

The 5 images per well were initially taken using the
same standard pattern, center (1), up (2), down (3), left
(4), right (5), by moving one image field with respect to
the central image [5]. Later in the process, we increased
the number of images from 5 to 9 by filling the corners
of the rectangle with images from 6 to 9 [5], in order to
increase the area investigated and further improve the
coefficient of variation without affecting the diagnostic
discriminability. Image 1 was always in the center of
the well. To determine the center of the well we used
one of the following methods: a) the live image under
4 x magnification should be symmetric, i.e., the shad-
ows in the four corners should have equal areas for an
aligned microscope; b) mark the center with a needle;
or c) use gridded plates (Pioneer Scientific; Shrews-
bury, MA) where the central square is always the 6th,
in the central row or column. For image quantification
we used two sets of tools: initially manual as provided
by Micron, software which came with the microscope;
later automated with Imagel.

For the initial cell count, we used a custom ImageJ
plug-in in which we ran “despeckle” three times; we
then filtered the image three times with a minimum
filter of radius 0.5; and then we ran “Subtract Back-
ground” with a rolling radius of 20. Finally, we made
the image binary and ran “Analyze Particles” in the
size range 200-10000. All of these ImageJ commands
were run inside a loop so that we could analyze all the
images from one cell line automatically. The ImageJ
plug-in was tuned by using manual cell counts on the
same images and the relative error was below 7%.

The target number of cells per 10x image was 417
which corresponded to an initial cell concentration of
50 cells/ml [11]. We allowed a variation of cell con-
centration between 45 and 60 cells/ml. To minimize
heterogeneity of the cell distribution in the image, we
eliminated images outside of the range 320-550 cells
per 10x image. For cellular aggregates at 48 h we used
manual ellipse fitting with the Micron software.

Average area per number of aggregates (A/N)

A/N was calculated in the following manner.
For each image, i.e., we calculate an average
aggregate area,<A>i, and counted the number of
aggregates, Ni. Then for each image we evaluate

the ratio<A>i/Ni. Typically, we used nine images
per well and we evaluate an average area per num-

9 {A)
ber for each well as the ((A); /N;) = %Zi:l (A

i

Then we average once more over the four wells

(A /N = § S0y (§350 ) - Forthe pur-
pose of simplifying the discussion we will use A/N
instead of (((A); /N;)). The aggregates were manually
fitted with ellipses using Micron 2.0 software and their
area and number were recorded. We developed an auto-
matic script for ImageJ which agrees well with manual
ellipse fitting. These two approaches were within one
standard deviation of each other. For simplicity we
called A/N area of the unit aggregate.

Aggregation rate

Rather than calculating A/N which involves averag-
ing across the four wells as described in the section
above, we look at the dependence of A/N on cell den-
sity (Fig. 1A), and then fit this dependence with a
line, f(x) =s*x+int. From the linear fit, we analyzed
the slope(s) and intercept (int) for the population of 38
cases. The linear fit was done within the boundaries
320 to 550 cells per 10x image field. For the aggrega-
tion rate, we have only single experiments where the
cell density varies between 320 to 550 cells per 10x
image. Therefore for this data set, we cannot report the
standard error of the mean. However, we are reporting
in Fig. 9 the test-retest validation for the aggregation
rate for 1 AC subject and 1 AD case.

Quantification of cross-validation

The three biomarker values were normalized
between 0 and 1 as % where x is the biomarker
value to be normalized, max is the maximum value,
and min is the minimum value of the data set of 26
cases. This normalization brings all the three biomark-
ers within the same range, 0 to 1, which makes the
comparison easier (Fig. 8A).

The curve fitting for all three biomarker values was
done in two steps. First the fitting was done with a
linear function, f(x)=a*x+b, for the AC values and
with an exponential function, g(x)=c*exp(d*x), for
the AD values. Second fit was done with a glued func-
tion h(x) =f(x) + g(x) =a*x+b + c*exp(d*x). For the
starting values of the parameters a, b, ¢, and d, we used
the end values from the previous fit. After fitting with
the glued function, h(x), the new fit parameters were
recorded and used for the plots in Fig. 8A.
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Cross-correlation of biomarkers

For assessing which pair of biomarkers is best cor-
related we used the absolute difference per case, |
by — by|, | bz - bs|, and |b; — by| where by =AggR,
by = ADI, b3 = A/N. The average values of the abso-
lute differences were then calculated for all the
19 AC cases, <(bj — bk)>AC = % Zilzl (bj — bk)i’
where j, k=1,3, and j # k, and all the 7 AD cases,

((bj = b)) s p = 33201 (bj — br),.where j k=13,
and j #* k. The overall averages for the absolute
differences were also calculated for all 26 values,
((bj— bk)>AD = % 21'221 (bj — bk)i' The smaller
these group differences are the closer the two biomark-
ers are correlated Fig. 8B.

Quantification of the majority rule

For the quantification of the majority rule we nor-
malized once more the biomarker values, x, with
respect to the specific Cutoff value, % Exam-
ples are shown in Fig. 8C and D with the colored
vertical bars, for the 7 AC and 7 AD cases. There are
three possible outcomes of this cutoff normalization -1,
1, and uncertain (U). When the biomarker value, X, is
equal with the cutoff value, we have an uncertain situa-
tion, i.e., we cannot diagnose the case and we label the
output of the biomarker as uncertain (U). This second
normalization with respect to the cutoff value simpli-
fies the outcome of the biomarker into three states: +1
for AD, —1 for AC and Non-ADD, and U for cutoff
values. Then considering that we have three biomark-
ers, the possible states for the sum(S) will be {3, 2,
1,-1,-2,-3, 2U, 3U}.

Data analysis

For data analysis, we used Gnuplot 4.4, a freely
available software (http://www.gnuplot.info). For fit-
ting of the raw data points, we used a built in fit function
from Gnuplot, which uses an implementation of the
nonlinear least-squares (NLLS) Marquardt-Levenberg
algorithm. Unless otherwise specified, the error-bars
are standard errors of the mean (SEM).

Probability distribution of cellular aggregates

For all the AD and all the AC patients, we binned the
values for slope(s) and intercept (int) of aggregates into
equal intervals, fit with Gaussian functions for each
variable, and then integrated into a normalized two-
dimensional distribution.

RESULTS

Increased AD Aggregation Rate for Banked
Samples

Cell aggregation is enhanced in AD patients when
compared with AC and non-ADD subjects [5]. Cell
aggregation was quantified by the area of the unit
aggregate, which is the A/N at 48 h, after plating on
Matrigel. The abnormal fibroblast aggregation in AD
cases [5] isin line with abnormal aggregation of fibrob-
last from other diseased cases such as DMD [6, 9]
or Down syndrome [8]. Note that the average life
expectancy for DMD is 25 years and therefore the
probability of overlapping with sporadic AD, which
typically occurs after 50 years of life, is minimal.

Here we look at a new way of screening AD patients
from AC and non-ADD subjects based on increas-
ing cell aggregation when the cell density increases
which we call slope intercept representation of cell
aggregation. The slope intercept representation for cell
aggregation has an intrinsic value as a new biomarker
and helps with further understanding the increased
cell aggregation for AD cases. This new biomarker,
is a more refined representation of cell aggregation
than a simple average (A/N), and might be a useful
tool of double checking the AD/AC/Non-ADD cases
which are too close to the cut-off line in the A/N
representation.

An example of the dependence of cell aggregation
(A/N) on cell density (# cells/10x image field) is illus-
trated in Fig. 1A. The linear dependence for the three
examples (1AD, 1 AC, and 1 Non-ADD) is illustrated
by the fit lines (Fig. 1A). The AD slope (green) is
a lot steeper than the AC (red) or Non-ADD (blue)
slope, and, as a consequence, the AD intercept is a lot
more negative than the intercept for AC and Non-ADD
(Fig. 1A, B).

A small number of banked cases from Coriell (9 cell
lines: 3AD, 3AC, and 3 Non-ADD) show the same
separability between AD and the other two groups
(Fig. 1B, C). The line fit was done in the window
320-550 cells per 10x image. A zoom in for the rect-
angle in Fig. 1B, presented in Fig. 1C, shows a gap both
in the slope (~30) and the intercept (15000), between
the near cut-off AC case and the near cut-off AD
case.

Furthermore, in this representation we also are able
to confirm that AD/AC/Non-ADD separation increases
for the 48-h time point when compared with the 24-h
time point (Fig. 1D) [5]. The arrows indicate that for
all 3 AD cases the slope is steeper and therefore the
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Fig. 1. Increased Alzheimer’s disease (AD) aggregation rate for banked skin samples. A) Three examples of the dependence of area per number
of aggregates (A/N) on the cell density (# cells/10x image field). The dependence was studied in the density range 320 to 550 cells per 10x image
field. The AD cases are in green, the age-matched control (AC) cases are in red, and the non-Alzheimer’s disease demented cases (Non-ADD)
are shown in blue. B) The banked AD cases (n=3) show a higher slope and a more negative intercept when compared with AC cases (n=3)
and Non-ADD cases (n=3). C) A zoom in for the rectangle from panel B shows a significant gap in slope (~30) and intercept (15000) between
the lowest AD case (green) and upper AC case (red). D) For the AD cases (n = 3), slope is steeper and intercept is more negative at 48 h (empty
symbols) when compared with 24-h images (filled symbols). AC-red, AD-green, Non-ADD-blue. E) Slope dependence on age of the patient.
2 AD cases (green), 2 AC cases (red), and 2 Non-ADD cases (blue) are plotted in the age range 55 to 70 years. The AD cases show a higher
aggregation rate in this age range. F) Dependence of the intercept on the age of the patient for the same cases as in panel E.

intercept goes more negative at 48 h when compared pared with 24 h, confirming that 48h is an optimum
with 24-h time point. In other words, the AD cases time-point for this biomarker, which is consistent with
move further away from the cut-off at 48 h when com- our previous finding for A/N [5].
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Fig. 2. Increased AD aggregation rate for samples from the clinic. A) Slope and intercept for 24 AC and 5 AD samples from the clinic. B)
Zoom in near the cut-off (rectangle in panel A) reveals a gap in the slope (2) as well as in the intercept (500). C) Plots of banked Coriell (filled
symbols) and fresh samples (empty symbols) from the clinic show similar trends and separation between AD and AC groups. D) Zoom in near

the cut-off (rectangle in panel C). AC-red, AD-green, Non-ADD-blue.

The aggregation rate (slope) and intercept change
with age as depicted in Fig. 1E and F, and, for approxi-
mately the same age-range (55-70 years), the AD cases
show a higher aggregation rate. Previous studies of the
dependence of cell aggregation (A/N) on age showed
that the AD diagnostic discriminability is preserved in
the age range of 50-90 years.

In summary, the slope/intercept analysis shows
another way of screening AD cases from age-matched
control cases and from Non-ADD patients. The slope
intercept representation for cell aggregation is a more
refined representation of cell aggregation than a simple
average, i.e., A/N, and might be a useful tool to resolve
the AD/AC/Non-ADD cases which are too close to the
cut-off line in the A/N representation. Typically the
cut-off line for the AD and AC populations is at the
intersection of the two Gaussian distributions that fit
the biomarker outputs. In a narrow region near the cut-
off line, the tails of the Gaussian distributions coexist

with certain probability therefore defining a gray zone
of false positive/negative. Unknown cases falling in the
gray zone for the A/N measure might be removed by
using the rate of change of A/N.

Validation of increased AD aggregation rate with
fresh samples from the clinic

The discrimination of AD cases from AC cases using
the slope intercept analysis was further investigated
in 29 samples from the clinic. Among these samples,
5 were AD cases and 24 were AC cases. The higher
slope and more negative intercept for AD cases was
confirmed by this study (Fig. 2A), as well as the gap
between the AD and AC groups (Fig. 2B). The slope
and intercept for banked samples from Coriell Cell
Repositories and fresh samples are showing the same
trend (Fig. 2C). The size of the gap in slope (~2)
and intercept (~500) is also preserved when these two
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cases (blue) are plotted in the age range 55 to 70 years. The AD cases show a higher aggregation rate in this age range. F) Dependence of the
intercept on the age of the patient for the same cases as in panel E.

data-sets are plotted (Fig. 2D). Narrowing of the gaps
in slope and intercept is due to population increase
from 9 cases from Coriell Cell Repositories, to 38
cases overall, which includes 29 samples from the

clinic.

Aggregation rate drives the separation between
the AD and AC groups

We further investigated what drives the separation
between AD and AC groups, the slope or the inter-
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cept of A/N versus the cell density. For the purpose
of achieving a greater separation between the AD and
AC groups, we decided to analyze the slope and inter-
cept independently. When we look at the intercept for
the AC, AD. and Non-ADD groups both at large scale
(Fig. 3A) as well as when we zoomed in near the cut-
off locus (Fig. 3B), we noticed an overlap. This overlap
will make this variable unsuitable for usage as an AD
discriminator.

However the slope, i.e., the rate of change, shows
a distinct separation between AD and AC/Non-ADD
groups (Fig. 3C, D). So, the driving force of the separa-
tion we see between the AD and AC/Non-ADD groups
is the rate of change of cell aggregation with increasing
cell density.

As previously shown in Fig. 1E and F, the aggre-
gation rate (slope) and intercept change with age as
depicted in Fig. 3E and F, and for approximately the

same age-range, 55-70 years, the AD cases show
higher aggregation rate. The intercept is more nega-
tive for the AD cases than for the AC and Non-ADD
cases. Please note that in Fig. 3E and F, we represented
the natural logarithm of the actual values and in order
to show negative values we used -In(-negative values).

Slope and intercept probability distributions

The value of an AD biomarker can be assessed by
using the probability distributions for the two groups,
AD and AC. Based on these probability distributions,
one can estimate the extent of possible overlapping
probability when the data sets increase. The two groups
of data (8 AD and 27 AC) were binned in slope
and intercept. The probability distributions were esti-
mated based on the frequency of occurrence in each
bin divided by the total number of occurrences. The
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raw probability data sets were fitted with Gaussian
curves in variable, slope, and intercept. Then the two
dimensional Gaussian probabilities were plotted using
Gnuplot, a freely available software. The AC proba-
bility distribution is narrower than the AD probability
distribution (Fig. 4A, B). The AC probability dis-
tribution resides on the tail of the AD probability
distribution (Fig. 4C, D) which accounts for a slight
upward shift (<10%) in the baseline. This upward shift
is also the overlapping probability which is <10%.
Although the data from 27 AC and 8 AD cases are
not overlapping at all in the slope variable, this analy-
sis suggests a possible overlapping for larger data sets.
When using this variable as a biomarker for larger data
sets, the estimated overlapping probability is less than
10%.

Average area per number of aggregates versus the
aggregation rate

Previously we quantified the fibroblast aggregation
as the A/N and reported an abnormally high aggrega-
tion in AD cases [5]. This time we further refined the
measure, and find that the rate of change of A/N within
cell density, within the boundaries 320 to 550 cells/10x
image-field, is linear. Furthermore, we found that the
aggregation rate (slope) is abnormally high for AD and
it is the driving force for this biomarker.

In this section we show that the refined measure of
cell aggregation, i.e., aggregation rate, works better
than an average measure, i.e. A/N, which we previously
defined [5] (also see the Methods section).

We looked at the population of 38 cases (§8AD, 27
AC, and 3 Non-ADD) from the point of view of the
efficacy of the two biomarkers quantified by the aver-
age area of the unit aggregate (A/N) and aggregation
rate (slope). The A/N measure of cell aggregation is
plotted against the aggregation rate (slope) in Fig. 5.
In the A/N representation (y axis), we marked one
AC case as an outlier (Fig. SA, black arrow), because
it is above the red horizontal line which is the cut-
off line (A/N =1000). The zoom in of the rectangular
area from Fig. 5A reveals that 3 AC cases and 1
AD case (Fig. 5B) are too close to the cut-off line.
Therefore, in this population of 38 cases, 5 cases are
uncertain in the A/N representation with 1 case as
an outlier and 4 cases too close to the cut-off line
(gray zone). Five cases out of 38 represent 13% of
the whole population which is a significant number
when dealing with AD diagnosis. However, when we
use the aggregation rate representation (x axis) of
the cell aggregation, the uncertainty for the 5 cases
is removed. The 4 AC cases are on the left side
of the vertical cut off line, and one AD case is at
the right side of the vertical cut-off line (Fig. 5B),
therefore diagnosed the same as the clinical diagno-
sis.

In summary, when using the same experiment but
a more rigorous analysis of cell aggregation, i.e., the
aggregation rate (slope), we screened all of the 38 cases
correctly. Therefore the rate of change of cell aggrega-
tion with increasing cell density becomes a powerful
tool for checking the less sophisticated measure of
A/N.



A o004

0.03
0.02
0.01

-0.01

AD Index

-0.02
-0.03
-0.04
-0.05
-0.06

FEV. Chirila et al. / Peripheral Biomarker for Alzheimer’s Disease 1289

I 19AC

T RN 0T W T TV T T T T W U U 0 T Y 0 O O
N MOMONO O OUNNDVWE NDONDDN=OT~D
B8B5 SS88ESK 83858853-88
Istststyslstslalslslalalslalatalslalslslslsts by slaY

Case

1

A -

8AD

z
5 8k o ¢
| —>]
’ GID(D@(D‘D QG’@(}Q%
E

9% correct cases

Aggr. Rate and AD Index  Aggr. Rate and Clinical D.

B

Ln(Aggregation Rate)

Ln(Aggregation Rate)

o«

Case
[
- =
.- 8AD >0
n
l/
/~ .. [ ] A M
h.... . &
o 8, °
e ©
a
* 5
=
z
.(")

96 correct cases

ANRRRRRAN

100
90
80

70

60

50
40

30

20

10

Aggr.Rate and VN Aggr. Rate and Clinical D.

Fig. 6. Cross-validation of aggregation rate with the AD-Index and Morphology assay. A) AD-Index for each of the 26 cases is shown with
the empty symbols. AD cases are in green and AC cases are in red. The two outliers (I AD, 1 AC) are indicated by the green and red arrows
respectively. Error-bars are standard errors of the mean (SEM). B) For the Morphology assay, the natural logarithm of the aggregation rate (filled
symbols) is plotted for each of the same 26 cases as in panel A. Black arrows show the lowest AD value and the highest AC value. C) Ln (A/N)
for each of the 38 cases is shown with the empty symbols. The two outliers (1 AD, 1 AC) are indicated by the green and red arrows, respectively.
AD cases are in green, AC cases are in red, and Non-ADD cases are in blue. Error-bars are SEM. D) Natural logarithm of the aggregation rate
(filled symbols) is plotted for each of the same 38 cases as in panel C. AD cases are in green, AC cases are in red, and Non-ADD cases are in
blue. The horizontal lines in A-D represent the cut-off for the AD-Index, Ln (Aggregation Rate), and Ln (A/N). E) AD-Index cross-validates
92.3% of the 26 cases diagnosed with the aggregation rate in panel B (yellow bar). Aggregation rate for the 26 cases in panels A and B is
100% overlapping with the clinical diagnostic (blue bar). F) Ln (A/N) cross-validates 92.1% of the 35 cases diagnosed with the aggregation rate
(yellow bar). Aggregation rate is 97% overlapping with the clinical diagnostic (blue bar).



1290 FEV. Chirila et al. / Peripheral Biomarker for Alzheimer’s Disease

0.02 T T T T L= T
A 7AD
@]
0.01 - O
o &
00 o}
x or o T
2 o]
a o]
< oot} 19AC © & -
© 0
(0]
-0.02 4
9] o®0 © -
_0.03 1 1 L 1 1 1
-6 -4 -2 0 2 4 6
Ln(Agg. Rate)

13 T T T T T r

12 + E

1 E

10 g

Ln(AN)

7+ \.@%8@) 1
[0]
(o] OOOO

5F o) J

4 ) . . L 2 L
6 4 -2 0 2 4 6 8

Ln(Agg. Rate)

Fig. 7. A simple majority rule, i.e., 2 out of 3 assays give the same outcome, increases the agreement with clinical diagnosis to 100%. A)
AD-Index versus the Ln (Aggregation Rate) reveals two cases, 1 AD (filled square and green arrow), 1 AC (filled circle and red arrow), as
outliers for the AD-Index assay. B) The two outliers for the AD-Index are not outliers for the Morphology assay and Aggregation Rate, i.e.,
logarithm of the area per number of aggregates versus the logarithm of the aggregation rate. This makes 100% agreement with the clinical

diagnostic.

Table 3
Quantification of the majority rule for the three biomarkers normal-
ized by the cutoff values. The cutoff value is labeled as an uncertain

(U) state
Sum of the normalized Diagnosis
+1 values
2,3 Alzheimer’s disease
0,1 Age-matched control or
Non Alzheimer’s Disease dementia
2 or more cutoff values (U) Not diagnosed

We have learned after systematic studies that apply-
ing boundary conditions for input variable in the assay
such as number of cells/well, cell density/confluence
(before using in the assay), days in culture (before
using in the assay), disease duration, etc., has removed
the outliers as well as the near cut-off cases (gray zone
cases) in the A/N representation. However, in this data
set of 38 cases we have not used such boundary con-
ditions but used the more refined measure which is the
aggregation rate (slope) instead.

Cross-validation

Cross-validation of the aggregation rate with the
AD-Index

A comparison of the aggregation rate with a well-
developed assay such as the AD-index [12—15] can also
be a measure of the performance of this new biomarker.
Out of the 38 cases tested with the aggregation rate
assay, 26 were also tested with AD-Index assay western
blot. Out of these 26 cases tested with both assays, 24

gave the same diagnosis (Fig. 6A, B). This represents
92.3% overlapping for the two biomarkers. As the AD-
Index is a well developed and tested assay on more
than 80% hyper-validated samples, we can consider it
as a standard for the comparison with the aggregation
rate. Furthermore, the AD-Index assay was improved
by using Duolink (Olink) technology which offers a
better dynamic range and a smaller variation for test-
retest variation. Implicitly the AD-Index with Duolink
(Olink) shows smaller errors than AD-Index western
blot and increases the dynamic range. The aggregation
rate agrees 100% with the clinical diagnosis for this
population of 26 cases.

Cross-validation of the aggregation rate with the
morphology assay

Furthermore we compare the aggregation rate with
area per number of aggregates [5], which is also a well-
studied assay. The results of this comparison can also
be a measure of the performance of this new biomarker.
All of the 38 cases tested with the aggregation rate were
also tested for the simpler measure of A/N. Out of these
38 samples tested with both assays, 35 gave the same
diagnosis (Fig. 6C, D). This represents 92.1% overlap
for the two biomarkers. As A/N is a more developed
and tested assay on more than 80% hyper-validated
samples, we can consider it as a standard for the com-
parison with the aggregation rate. For this population
of 38 cases, the aggregation rate agrees in 97% of the
cases with the clinical diagnosis.
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AD case and this is the essence of the majority rule.

Importance of cross-validation

AD is a complex disease with a multifactorial struc-
ture in which many pathways are disrupted and/or
affected. Furthermore the sporadic form of AD has
an onset above 65 years old when the likelihood of
co-morbidity with other diseases is very high. There-
fore, a single biomarker will unlikely detect with high
precision sporadic AD cases in their early progression
when the drug efficacy for AD might be very high. The
proposed biomarker quantifying the fibroblast aggre-
gation rate, when cross-validated with other two more
mature biomarkers, shows an overlap of approximately
92%. However, when considering the population of 26
cases tested with all three biomarkers and using a sim-

ple majority rule, i.e., 2/3 assays give the same result,
the agreement with the clinical diagnosis increased to
100% (Fig. 7). Therefore, we believe that using more
than one assay for diagnosing AD, as well as cross-
validation using a majority rule, will help improve
the rate of success for final diagnosis. The method
of cross-validation of the three assays, presented
here, can also increase the confidence of the clinical
diagnosis.

Here we used the simple majority rule with ref-
erence to the clinical diagnosis. However, the same
rule is expected to hold when used with reference to
hyper-validated samples, i.e., autopsy confirmed AD
and Non-ADD and non-demented AC.
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Quantification of cross-validation

In this section, we show a way to quantitatively
measure the cross-validation for the three biomarkers
discussed in this paper. For this purpose, we normal-
ized the values of the three biomarkers for 26 patients,
of which 19 were age-matched controls (AC) and
7 were AD (Fig. 8A). The normalized values were
between 0 and 1 (please see the Methods section) and
make the comparison between the three biomarkers
easier. The AC cases are shown with.empty symbols
while the AD cases are shown with filled symbols.
The AC cases show a linear dependence for all three
biomarkers, and it is almost flat for aggregation rate
and A/N. The AD cases show a highly nonlinear depen-
dence for which we used an exponential curve to fit.
In Fig. 8A, the aggregation rate (AggR) values were
ranked from minimum, 0, to maximum 1. The AD-
Index biomarker (green circles in Fig. 8A) show a
significant noise especially for the AC cases.

To measure the closeness of the three biomarkers, we
chose to look at the absolute difference between pairs
of values on the case by case basis (see the Methods
section and Fig. 8B). By far the less noisy difference is
|A/N-AggR|. Probably the noise of the other two abso-
lute differences, |AggR-ADI| and |ADI-A/N|, comes
from the noise in the AD-Index.

An overview of the closeness of the three biomark-
ers is represented in Fig. 8B where the average of the
absolute distances is presented for the AC cases (red
squares), AD cases (green squares), and overall cases
(black squares). The absolute differences between the
AD cases (green) are bigger than the absolute differ-
ences between the AC cases, while the overall absolute
difference is in between. Again the absolute difference

between the A/N and aggregation rate, |[A/N-AggR|, is
the smallest suggesting that the two biomarker mea-
sures have the strongest correlation.

Finally we show a way of quantifying the major-
ity rule for the three biomarkers we discussed in this
paper. The same majority-rule method could be applied
to more than three biomarkers. For the purpose of dis-
cussing the method, we used the three biomarker values
for the 7 AC and 7 AD patients and normalized these
values as % (see the Methods section), where
x is the current value of the biomarker and the Cutoff
is the separation between the AC and AD groups. The
cutoff values are determined at the intersection of the
two Gaussian distributions fitting the AC and AD data.
The normalized values as described above can have one
of the three possible states: -1 for AC and Non-ADD,
1 for AD, or uncertain (U) for the cutoff value. The
normalized AD values for the three AD biomarkers
are shown in Fig. 8D with color bars. With red lines,
we represented the AggR, with green lines the ADI,
and with blue lines the A/N. For cases 19 and 26, one
biomarker (AD-Index in green) is giving a normalized
value opposite to the other two biomarkers. Therefore
these cases are diagnosed correctly if we follow the
majority rule. One way to quantify this rule is to sum
up all the +1 values/per case using the simple func-
tion like count if (>0) as shown by the empty black
squares in Fig. 8C or filled black squares in Fig. 8D
(see the Methods section). If the result of the “count
if” is greater or equal than 2, then the case is an AD
(Fig. 8D). If the result of the count if is less than 2,
than that case is an AC/Non-ADD case (Fig. 8C). If
two or more biomarkers for one case have the cutoff
value (U), then we cannot diagnose that case on the



EV. Chirila et al. / Peripheral Biomarker for Alzheimer’s Disease 1293

basis of these three biomarkers. Similarly one can use
the count if (<0) which is a redundant pathway. This
approach is summarized in Tables 2 and 3 and Fig. 8C
and D.

Test—retest reliability

The test retest reliability was verified for the Aggre-
gation Rate with two cells lines (1 AC, 1 AD) (Fig. 9).
First experiments (circles) were repeated for the same
cell lines with a different Matrigel lot. Lines are the
best fit. The average values for the Ln (Aggregation
Rate) and Ln (Intercept) are presented in Fig. 9B, and
the error-bars represent the standard error of the mean.

CONCLUSIONS

In summary, the slope intercept representation of the
human skin fibroblast aggregation showed significant
separation in the slope but not in the intercept. This
suggests that the elevated rate of change of cell aggre-
gation with increasing cell density in AD is the driving
force for this new biomarker.

Analyses on 38 cases, out of which 9 were banked
cases and 29 were cases from the clinic, suggest a clear
separation between AD and AC/Non-ADD when using
the aggregation rate (slope) as a biomarker.

The analysis of the probability distributions of the
slope and intercept for 35 samples suggests that the
probability distribution for the AC group (n=27) is
narrower and resides on the tail of the probability dis-
tribution of the AD group (n = 8) which is wider. This
suggests that for larger data sets, the estimated over-
lapping probability for the two groups, AD and AC, is
less than 10%.

Furthermore the trend of higher aggregation rate for
AD cases when compared with AC/Non-ADD cases
is in line with our previous studies and reports show-
ing that AD cells are consistently less adhesive than
the AC/Non-ADD cells [5]. The abnormal fibroblast
aggregation rate in AD is similar with the abnormal
fibroblast aggregation in Down syndrome [7] or in
DMD [6, 8].

The new biomarker, aggregation rate (A), was cross-
validated with two more mature assays, AD-Index (B)
and A/N (C). The cross-validation resulted in 92%
overlap with each of the assays and in >97% over-
lap with the clinical diagnosis. The 92% agreement
of the new biomarker, A, with the two more mature
biomarkers, B, and C, which were also tested with
hyper-validated samples makes this new biomarker,
via Euclid’s common notions [17], a hyper-validated

biomarker. In a more concise form, if biomarkers
B, C=hyper-validated and if B, C=A (92%) then
A =hyper-validated (92%).

Furthermore we show here for the first time that a
simple majority rule, i.e., when two out of the three
diagnostic assays agree, they also agree with clini-
cal diagnosis 100%. We expect this majority rule to
yield the same high level of agreement with autopsy-
confirmed/genetically determined (hyper-validated)
samples.
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