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Spatiotemporal Complexity of Fibroblast
Networks Screens for Alzheimer’s Disease
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Abstract. Drugs to treat Alzheimer’s disease (AD) have been unsuccessful in preventing its devastating cognitive deficits and
progressive neurodegeneration. The lack of a definitive diagnostic for AD has been a major obstacle to AD drug discovery.
Here, we describe a novel, highly accurate peripheral diagnostic for AD patients based on quantitatively measured complexity of
skin-sampled fibroblast networks. A significant number of samples were studied under double-blind conditions and had autopsy
and/or genetic validation. An additional sample confirmed the diagnostic discrimination on freshly obtained skin samples. A sub-
sample of these diagnostic differences were induced by oligomerized amyloid-�1-42. Based on the accuracy of these measures
that utilize physical principles such as fractal dimension and lacunarity as well as the significant correlation with disease duration,
this biomarker profile appears to identify accurately AD patients for therapeutic intervention.
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INTRODUCTION

The complexity of Alzheimer’s disease (AD) raises
a great challenge for early screening. A biological
marker that would predict AD prior to symptomatic
diagnosis and/or definitively diagnose early AD could
have a major impact in testing and treating AD in
our growing elderly population. The long term prodro-
mal stages, co-morbidity with other non-Alzheimer’s
disease dementia (non-ADD), and the multi-factorial
nature of AD offer further challenges for successful
diagnosis with a single biological marker.

Accumulating evidence indicates that AD can cause
pathophysiological changes not only in the central ner-
vous system (CNS), but also in peripheral tissues. AD
metabolic pathways are ubiquitous in the human body
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and are found in blood [1–4], saliva [5, 6], skin fibrob-
lasts [7–10], or in the human lens [11]. Diagnosing
and testing pathophysiological hypotheses for AD in
peripheral tissue are potentially minimally invasive,
cost-effective, and much more readily accessible, when
compared with CNS biomarkers.

Candidate fibroblasts biomarkers for AD have been
based on K+ channels [12, 13], protein kinase C
(PKC) isozymes [14, 15], Ca2+ signaling compo-
nents [16], MAP kinase extracellular regulated kinase
1/2 (ERK 1/2) phosphorylation [17], bradykinin-
induced phosphorylation of ERK1 and ERK2 [18,
19], mitochondrial function [20], antioxidative path-
way components [21], and bradykinin activity [22].
Abnormal changes in membrane fluidity [23, 24],
changes in cytoskeletal proteins expressions [25, 26],
and decreased adhesiveness [27] in AD fibroblasts
were also reported. The extracellular matrix, a com-
plex network composed of an array of macromolecules
important for regulation of cell functions and tissue
architecture, is dysregulated in AD skin fibroblasts
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[28]. The microtubule networks are disrupted in famil-
ial AD patients when compared with age-matched
controls [29].

The multitude of previously implicated pathways in
AD fibroblasts emphasizes the complexity of this dis-
ease. These pathways are very likely interconnected in
a complex network-like structure. Therefore, we were
interested from the diagnostic point of view to capture
this complexity with integrative and dynamic measures
of network complexity such as fractal dimension and
lacunarity. The complexity of actually interconnected
pathways suggested a novel approach to AD screening
based on a collection of markers rather than just one.

For these reasons we quantitatively discriminated
the dynamics of AD fibroblast network formation in
culture conditions from age-matched control (AC)
cases and non-ADD patients. The four markers
described here quantitatively assess patterns of fibrob-
last network dynamics on a three dimension (3-D)
matrix.

MATERIALS AND METHODS

Banked and fresh cell lines used in this study

We carried out experiments using skin fibrob-
last samples from 33 patients as provided by the
Coriell Institute for Medical Research (Camden,
NJ), (Table 1 and Supplementary Table 1; available
online: http://www.j-alz.com/issues/33/vol33-1.html#
supplementarydata04) and plated them on a thick
layer (∼1.8 mm) of 3-D matrix (Matrigel, BD Bio-
sciences, San Jose, CA) on 12 well plates. The available
patient information is posted on Coriell web site
(http://ccr.coriell.org/) and is now summarized in detail
in Supplementary Table 1. The cell lines analyzed
(33) were, for the most part (30/33) very well char-
acterized based on a number of criteria: autopsy and

genetic family history (Table 1). A significant number
of samples (n = 13) were studied under double-blind
conditions, and a further sample confirmed the diag-
nostic differentiation on freshly obtained skin samples
(green symbols in Fig. 1D). The age-matched con-
trol cells chosen for this paper were not demented
at the date of skin biopsy extraction. All the samples
were taken antemortem with two exceptions, AG05770
and AG08245, which were taken postmortem. The
banked skin fibroblast cells were frozen stocks under
liquid nitrogen. Primary cultures were established after
thawing those frozen samples and followed through
successive passaging [17–19]. All cell lines used in
this study, were primary cell lines and were not treated
in order to be immortalized.

Freshly taken fibroblasts were obtained as follows.
Punch-biopsies (2-3 mm, upper arm) skin tissues from
patients and controls were obtained by qualified per-
sonnel under the supervision of Dr. Shirley Neitch
with the IRB approval of Marshall University (Hunt-
ington, WV). All patients (or relatives/representatives)
signed informed consent forms. The clinical diagnosis
was conducted by Dr. Neitch. The Institutional Review
Board at Marshall University approved the procedure.
The method of isolating fibroblasts from skin biopsies
was followed as described elsewhere [17]. For the tests
described here, we used cells with passages between 5
and 15.

The initial cell density was controlled to be 50
cells/mm3 and was homogenized with 1.5 ml Dul-
becco’s Modified Eagle Medium with 10% fetal bovine
serum and 1% penicillin/streptomycin for each well.
Cells were kept in a CO2 water-jacket incubator
(Forma Scientific) up to 7 days after plating.

Image capture

Images of the cellular networks were captured
with an inverted microscope (Westover Digital AMID

Table 1
Banked cell lines used in this study

Diagnostic criteria Rule AD IN Rule AD OUT Total

AD patients Non-ADD Non-demented
controls

Autopsy confirmed 7 1 PD –
Genetic & family history 3 7HD+1PD –
Clinical diagnosis ONLY 3 – –
Total 13 9 11 AC 33
Well characterized 10 9 11 30

AC-Age-matched controls; HD-Huntington’s disease; AD-Alzheimer’s disease; PD-Parkinson’s
disease.

http://www.j-alz.com/issues/33/vol33-1.html#supplementarydata04
http://ccr.coriell.org/
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Fig. 1. Measure I: Area per number of aggregates. Examples of Alzheimer’s disease (AD) fibroblasts aggregates (A), and age-matched controls
(AC) (B) at 48 h (see Materials and Methods section for details). Scale bar is 10 �m. C) Probability distribution of cellular aggregates as a
function of area and number at 48 h. The AD group (n = 13) separated well from the AC group (n = 11). D) Population data for the measure of
natural logarithm of the ratios of aggregate areas to their number, Ln(Area/#), for AC (n = 11; circles), AD (n = 13; squares), non-ADD (n = 9;
triangles). Empty symbols represent autopsy or genetic validated samples, while red represent samples analyzed under double-blind conditions.
Green symbols represent fresh samples. E) Increase of area per number of aggregates with disease duration. Numbers associated with each point
represent the number of cell lines. Red line is the best linear fit for the duration points. F) Measurements for the 1 year disease duration (n = 2)
were markedly lower than the measures for ≥4 years of disease duration (n = 6). Ln(Area/#) was significantly smaller (p < 0.039) than the late
measure. Error-bars represent the standard error of the mean (SEM).

Model 2000, Westover Scientific, Bothell WA), con-
trolled by a computer via an image acquisition software
(Micron 2.0.0), using a 10× and a 4× objective.
We captured five images per well and typically we
used three wells per cell line. In the first day we

acquired images every hour, the second day every other
hour, and for the remaining three days we acquired
images three times a day. Images were processed
with ImageJ, a freely available software from NIH
(http://rsbweb.nih.gov/ij/).

http://rsbweb.nih.gov/ij/
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Image acquisition and quantification

The 5 images per well were initially taken using the
same standard pattern, center (1), up (2), down (3),
left (4), right (5), by moving one field with respect
to the central image (Supplementary Figure 1). Later
in the process, we increased the number of images
from 5 to 9 by filling the corners of the rectangle
with images from 6 to 9 (dotted lines in Supplemen-
tary Figure 1), in order to increase the area investigated
and further improve the coefficient of variation without
affecting the diagnostic discriminability. Image 1 was
always in the center of the well. To determine the cen-
ter of the well we used one of the following methods:
a) the live image under 4× magnification should be
symmetric, i.e., the shadows in the four corners should
have equal areas for an aligned microscope; b) mark the
center with a needle; or c) use gridded plates (Pioneer
Scientific; Shrewsbury, MA) where the central square
is always the 6th, in the central row or column. For
image quantification we used two sets of tools: initially
manual as provided by Micron, software which came
with the microscope; later automated with ImageJ.

For the initial cell count, we used a custom ImageJ
plug-in in which we ran “despeckle” three times; we
then filtered the image three times with a minimum
filter of radius 0.5; and then we ran “Subtract Back-
ground” with a rolling radius of 20. Finally, we made
the image binary and ran “Analyze Particles” in the
size range 180-Infinity. All of these ImageJ commands
were run inside a loop so that we could analyze all the
images from one cell line automatically. The ImageJ
plug-in was tuned by using manual cell counts on the
same images and the relative error was below 7%.

The target number of cells per 10× image was 417
which corresponded to an initial cell concentration of
50 cells/�l (Supplementary Figure 3B). We allowed
a variation of cell concentration between 45 and 60
cells/�l. To minimize heterogeneity of the cell distri-
bution in the image, we eliminated images outside of
the range 195–650 cells per 10× image.

For cellular aggregates at 48 h we used manual
ellipse fitting with the Micron software.

Fractal dimension and lacunarity

For fractal and lacunarity analyzes we used the
FracLac 2.5 plug-in (http://rsbweb.nih.gov/ij/plugins/
fraclac/fraclac.html) using the “box counting” method
[30–33]. The recovery slope and intercept was moni-
tored by fitting a line (See Data analysis section and
Fig. 2C-pink line) in the range 20–80% of the min-

max difference. The average lacunarity was calculated
between 0 and 120 h.

Average area per number of aggregates

Average area per number of aggregates was cal-
culated in the following manner. For each image we
calculate an average aggregate area <A>i and a number
of aggregates Ni. Then for each image we evaluate the
ratio <A>i/Ni. Typically, we used five images per well
and we evaluate an average area per number for each

well as 1
5
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was calculated for each cell line (Fig. 1D). The aggre-
gates were manually fitted with ellipses using Micron
2.0 software and their area and number were recorded.
We developed an automatic script for ImageJ which
agrees well with manual ellipse fitting. These two
approaches were within one standard deviation of each
other.

Cell migration

Freely migrating cells were counted at 48 h, N1, and
approximately 7 h later, N2. The migration rate was cal-
culated as R = (N2 − N1)/�T, where �T is the time
interval between counts.

Effect of amyloid-β (Aβ) on network formation,
cellular aggregation, and migration

AC and AD fibroblasts were treated overnight in T25
flasks with 1 �M oligomerized A�; then cells were
plated on 3-D matrix using the same cell density 50
cells/mm3. We used the same four measures of the net-
work: cellular aggregation at 48 h after plating, fractal
and lacunarity curves, and cellular migration.

Preparation of oligomerized Aβ

Oligomerized A� was prepared by a method adapted
from Hoshi et al., Noguchi et al., and Sen et al.
[34–36]. Briefly, A�1-42 was dissolved in 1,1,1,3,3,3-
hexafluoro-2-propanol and incubated overnight at 4◦C
and then for 3 h at 37◦C. Finally, the dissolved A�1-42
was lyophilized in 1.5-ml polypropylene centrifuge
tubes at 40 nM/tube concentration. For preparing the

http://rsbweb.nih.gov/ij/plugins/fraclac/fraclac.html
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Fig. 2. Measures II and III. Fractal and lacunarity analyses. One hour after incubation, the fractal dimension for this AC cell line was 1.72
(A) and lacunarity is 0.37, while after 48 h the fractal dimension dropped to 1.05 and lacunarity increases to 0.75 (B). Scale bar is 10 �m. C)
Examples of fractal curves for one AD, one AC, and one non-ADD cases. The recovery slope and intercept was monitored by fitting a line
(pink) in the range 20–80% of the min-max difference. D) Population data for slope versus intercept of the recovery for fractal curves: AD-green
(n = 13), AC-red (n = 10), non-ADD-blue (n = 9). E) Examples of lacunarity curves for AD, AC, and non-ADD. F) The average lacunarity was
used as a measure for separating the three groups: AD-green (n = 8, square), AC (n = 6, red), non-ADD (n = 8, blue). Error-bars are standard
errors of the means (SEM).

oligomerized A�, the lyophilized A� was dissolved
in phosphate-buffered saline (PBS) without Ca2+ or
Mg2+ at less than 50 mM concentration and rotated
for 14 h at 4◦C. After incubation, the A� solution was
purified using a 0.65 �m cut-off filter (Amicon Ultra,
Millipore) to remove the fibrils, and the soluble fraction

was saved to obtain the most toxic oligomers. The sizes
of the oligomers were determined by size exclusion
chromatography and atomic force microscopy in our
laboratory and found to be oligomeric. Atomic force
microscopy studies showed that the majority of the
species were ∼8–10 nm in height consistent with the
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previous findings [36]. Before treatment of the fibrob-
lasts, the toxicity of the A� oligomers was regularly
checked by standard neurotoxicity assays [36].

Data analysis

For data analysis we used Gnuplot 4.4, a freely avail-
able software (http://www.gnuplot.info). For fitting of
the raw data points, we used a built in fit function
from Gnuplot, which uses an implementation of the
nonlinear least-squares (NLLS) Marquardt-Levenberg
algorithm. Unless otherwise specified, the error-bars
are standard errors of the mean (SEM).

Probability distribution of cellular aggregates

For all the AD and all the AC patients, we binned
the values for area and number of aggregates into inter-
vals which are inversely proportional to the density of
points, fit with Gaussian functions for each variable,
and then integrated into a normalized two-dimensional
distribution.

RESULTS

Within 1 to 2 h, skin fibroblasts in culture come into
close apposition to each other to form measurable net-
works, and after one day these networks degenerate and
edges retract to leave behind aggregates (Supplemen-
tary Figure 2). Aggregates were investigated at 48 h
using their average aggregate area per number. This
method accurately diagnosed AD patients distinguish-
ing them from AC and non-ADD (Fig. 1).

Two additional quantitative markers that measure
the complexity of human skin fibroblast networks con-
sisted of fractal dimension and lacunarity [30–33].
With these two measures, fractal and lacunarity curves
were constructed at successive time points (Fig. 2).
Recovery was measured by the slope and intercept of
the fractal curves, and showed quantifiable differences
for the three populations (AD, non-ADD, and AC).
Lacunarity is a complementary measure for complex-
ity discrimination that quantifies the gaps in the cellular
networks. AD cell lines showed an increased average
lacunarity when compared with cell lines from AC
and non-ADD individuals. Finally, a fourth measure
evaluated fibroblast migration after 48 h. This measure
revealed a decreased number of migrating cells and rate
of migration for AD and non-ADD fibroblasts. The last
three methods offer the opportunity to screen not only
AD from AC but also non-ADD such as Huntington’s
and Parkinson’s diseases from the other two groups.

These four methods complement each other and, as an
internally consistent profile, offer a novel approach for
diagnostic screening of AD patients.

I: Average area per number of aggregates

High accuracy was achieved when using the mea-
sure of the average area per number of aggregates.
This measure was considerably higher for AD than for
AC and non-ADD (Diagnostic accuracy 100%, n = 33
(nAD = 13, nAC = 11, and nNon−ADD= 9 p < 0.000001
for AD versus AC, and p < 0.00001 for AD versus
non-ADD).

The AD cells showed large isolated aggregates
(Figs. 1A, 3A, Supplementary Figure 3A), while
the AC and non-ADD fibroblasts showed numerous
smaller aggregates (Figs. 1B, 3B). Similar results were
obtained for 9 (5 AC, 4 AD) fresh samples from the
clinic when tested with this method (green symbols in
Fig. 1D).

The probability distribution of the cellular aggre-
gates as a function of area and number at 48 h showed
that the AD group (n = 13) separates well from the
AC group (n = 11). The peak probability value for AD
population is at (N = 5, Area = 12370) while the AC
population has a peak at (N = 8, Area = 1004). The stan-
dard deviations for the AC population were σN = 2.3,
σArea = 451, while for the AD population were
σN = 2.6, σArea = 5000. These standard deviations indi-
cated that the probability distributions for the numbers
of aggregates had some overlap while the probability
distributions for the areas had no overlap at half-width.
Therefore, a simple method of increasing separability
between AD and AC populations was to collapse the
two variables into one by dividing them as area/number
(see Materials and Methods section for details).

The population data (Fig. 1D) showed no overlap
between AC, non-ADD, and AD. The average natural
logarithm of area per number of aggregates increased
linearly with AD duration (Fig. 1E), suggesting that
this measure correlated with disease progression.

Thus far, the measures we have presented com-
pletely discriminate AD from AC and non-ADD
leaving an uncertainty in separating AC from non-
ADD. With the next three measures, we further refine
the screening by addressing the question of separability
of all three populations (AC, AD, and non-ADD).

II: Fractal analysis

The dynamics of spatiotemporal complexity such
as network formation (Fig. 2A), network degeneration

http://www.gnuplot.info
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(Fig. 2B), and recovery was measured by the fractal
and lacunarity curves (Fig. 2C, E). The AD fibrob-
last networks measured by these physical parameters
were markedly less complex when compared to AC
and non-ADD networks. After network degeneration
(∼48 h, Fig. 2B), cells migrated and within a few days
they approached confluence. This recovery was cap-
tured by a linear increase in fractal dimension (Fig. 2C).
The slope versus the intercept of each curve that tracks
fractal dimension as a function of time was markedly
different in the three groups (97% accuracy, n = 33
(nAD = 13, nAC= 10, nNon−ADD = 9); p < 0.0001 for
AD versus AC, and p < 0.00001 for AD versus non-
ADD). Thus, the fractal analysis was more powerful
than the first method because it discriminates not only
between AD and AC, non-ADD but also between AC
and non-ADD (p < 0.01) (Fig. 2D).

III: Lacunarity analysis

Lacunarity is a complementary measure for frac-
tal dimension used as a second level of complexity
discrimination by quantifying the gaps of the fibrob-
last patterns. The average lacunarity of the fibroblasts
was also higher for fibroblasts taken from AD when
compared to AC and non-ADD fibroblasts. Typically,
the lacunarity increased and peaked when the network
degeneration was maximal, i.e., when only isolated
aggregates were visible near the time point of 48 h
(Fig. 2E, F). The lacunarity decreases as the network
regeneration starts and the cells were becoming more
confluent. The population data (Fig. 2F) showed that
average lacunarity, like fractal analysis, discriminated
not only between AD and AC, non-ADD but also
between AC and non-ADD (p < 0.01) (Fig. 2F).

Unlike methods I and II, fractal and lacunarity
analysis discriminated between the three groups (AC,
non-ADD, and AD).

IV: Cell migration

Freely migrating cells were counted at 48 h, N1, and
approximately 7 h later, N2. The migration rate was
calculated as R = (N2 − N1)/�T, where �T was the
time interval between counts. A freely migrating cell
was a cell that was not attached to the aggregates, as
depicted by the green dots in Fig. 3A, B. The number of
migrating cells was reduced in AD fibroblasts (Fig. 3A)
when compared with AC (Fig. 3B). The population
data (Fig. 3C) showed that AD fibroblasts (squares)
and non-ADD fibroblasts (triangles) had a significantly
lower number of migrating cells and rate of migration

when compared with AC fibroblasts. AD fibroblasts
(squares) showed the smallest number of migrating
cells and the lowest migration rate, while AC fibrob-
lasts (circles) showed the highest number of migrating
cells and the highest migration rate. Interestingly non-
ADD fibroblasts separated (with one exception) from
AD and AC.

Importantly, the number of migrating cells
decreased with increasing disease duration of AD
(Fig. 3D).

Effect of Aβ on network formation, cellular
aggregation, and migration

Initial experiments suggest that some of the dif-
ferences between AD and AC fibroblasts were due
to oligomerized A�. AC fibroblasts treated overnight
with 1 �M oligomeric A�1-42 changed their pheno-
type to AD-like phenotype when plated on 3-D matrix
(Fig. 4A–D). Our preliminary results on AC cell lines
(n = 3) showed that A� impairs network formation
(Fig. 4B) by decreasing the network connectivity and
increasing cellular aggregation at 48 h by increasing
the size of cellular aggregates and by reducing the
number of aggregates. The increased cellular aggre-
gation was reflected in fractal and lacunarity curves
which were AD-like (Fig. 4C, D). A� also impaired
cellular migration in AC cell lines by reducing the
number of migrating cells after 48 h. Interestingly, sim-
ilar experiments on AD fibroblasts (n = 3) showed no
distinguishable effect on cellular aggregation at 48 h,
fractal dimension, and lacunarity. These findings were
consistent with recently published results showing an
excess of A�1-40 in neurons derived from two famil-
ial and one sporadic AD skin fibroblast cell lines via
induced pluripotent stem cells technology [37, 38].

The treatment with 1 �M oligomeric A�1-42 in T25
flasks overnight did not result in cell death as indicated
by the cell attachment on a 3-D matrix in the assay. Typ-
ically, for this assay, when the cells were platted on a
3-D matrix, within 30 min the viable cells attached and
started forming network connections. Furthermore, the
cell aggregation at 48 h (Fig. 4E, F) was another way
of proving the cell viability.

Accuracy, specificity, and sensitivity

The methods described had an average rate of
diagnostic accuracy of 97% (Supplementary Table 2)
ranging between 95% for the average lacunarity and
100% for the average area per number of aggregates.
For the fractal analysis (slope versus intercept), the
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Fig. 3. Measure IV. Cell migration after 48 h. A) Examples of freely migrating fibroblasts marked with green dots in A (AD) and B (AC) at 48 h
after plating. Scale bar is 10 �m. Examples of migrating cells pointed by the arrow in C. C) Natural logarithm of migration rate versus natural
logarithm of number of migrating cells. Squares, AD (n = 10); triangles, non-ADD (n = 7); circles, AC (n = 9). Empty symbols were autopsy
or genetic validation. Red symbols were double blind. D) Linear dependence (slope = −0.56, intercept = 1.34) of the natural logarithm of the
number of migrating cells on the natural logarithm of AD disease duration. Error-bars are standard errors of the mean (SEM).

rate of success was 97%, while for the cell migra-
tion the rate of success was 96%. For the methods
proposed, the average sensitivity was 98% (Supple-
mentary Table 2) with a range between 92% for fractal
analysis (95% confidence interval, 83% to 100%) and
100% for the average area per number of aggregates,
lacunarity analysis, and cell migration.

The average sensitivity is 98%, while the average
specificity is 98.5% (Supplementary Table 2). The two
values different from 100% were measured for fractal
analysis and cell migration which showed a sensitivity
of 92% (sensitivity for fractal analysis: 95% confi-
dence interval 83% to 100%), and a specificity of
94% (specificity for cell migration: 95% confidence
interval 86% to 100%), respectively (Supplementary
Table 2). Since the sample size was relatively small, the
confidence intervals for these two values (sensitivity
for fractal analysis and specificity for cell migration)
were calculated step by step as described pre-
viously (http://www.wikihow.com/Calculate-95%25-
Confidence-Interval-for-a-Test%27s-Sensitivity).

In summary, the four methods have an average accu-
racy of 97%, an average sensitivity of 98%, and an
average specificity of 98.5%.

DISCUSSION

A number of observations in the literature suggest
that the extracellular matrix [28], membrane fluidity
[23, 24], cytoskeletal protein expressions [25, 26],
microtubule networks [29], and various interrelated
signaling pathways including PKC, ERK [14–17], and
calcium signaling [16] are altered in AD skin fibrob-
lasts compared to AC cases. We hypothesized that
all of these altered phenomena may have one bio-
physical read-out to distinguish AD skin fibroblasts
with AC and non-ADD cases. This biophysical read-
out tested here was the complex dynamical behavior
of the skin fibroblasts in a 3-D matrix cell cul-
ture system. We intended to quantitatively measure
the differences in network formation, cellular aggre-

http://www.wikihow.com/Calculate-95%25-Confidence-Interval-for-a-Test%27s-Sensitivity
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Fig. 4. Effect of A� on network formation and cellular aggregation. A) Control cell line at 2 and 0.5 h after plating on 3-D matrix. B). The
same control cell line treated overnight with 1 �M oligomerized A� and visualized at 2 and 0.5 h showed impairment in network formation.
C) Fractal dimension for the A�-treated control cell line (green) had an AD-like phenotype. D) Higher lacunarity for the A�-treated control
cell line (green) was indicative of AD phenotype. E) Non-treated control cell line at 48 h after plating showing a typical high number of small
aggregates. F) The same control cell line using A�1-42 treated cells overnight showed at 48 h after plating a low number of large aggregates.
Experiments depicted in E and F were done in parallel. Error-bars are standard error of the mean (SEM). Scale bar is 10 �m.

gation, and cell migration between AD, AC, and
non-ADD.

During development, the ectoderm evolves into the
skin, the sense organs, and the primitive nervous sys-
tem. Increasing evidence has supported the so-called
brain–skin axis [39, 40]. Mouse and human fibroblasts,

for example, can be reprogrammed to become func-
tional neurons with a combination of four transcription
factors that mediate a pluripotent state [37, 38]. There-
fore, the induced pluripotent stem cells technology can
be used to induce neurons from skin fibroblasts and
to further observe phenotypes relevant to AD. The
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interaction between the cutaneous nervous system
and skin cells participates in skin inflammation and
wound healing [41]. Circadian clocks in peripheral
skin fibroblasts are synchronized with the circadian
pacemaker in the suprachiasmatic nucleus of the
hypothalamus [42, 43]. Furthermore, there is evi-
dence supporting a link between cutaneous (i.e.,
systemic) manifestations of abnormalities in amyloid
metabolism and amyloid deposits in the brains of
AD patients [39]. For example, presenilin-1 is one
of the major components of the �-secretase complex.
Mutation of presenilin-1 increases the activity of the
�-secretase complex on the amyloid-� protein precur-
sor and increases toxic A� production, which has been
considered to be one of the major cause of AD [44,
45]. Presenilin-1 is also involved in epidermal growth
factor receptor turnover [46]. Partial loss of presenilin-
1 expression may lead to seborrheic keratoses and
inflammatory skin diseases [47]. Gene expression stud-
ies using familial AD skin fibroblasts showed that the
disease process may even start before the onset of cog-
nitive decline [48]. Familial AD fibroblasts were found
to produce excess A� in cultured fibroblasts [7, 8, 37].

A variety of molecular measures in skin fibroblasts
indicated AD-specific deficits of PKC, and ERK 1/2
signaling, which are involved in the A� pathway [8,
15, 18, 19, 49]. This signaling has also been implicated
in AD-specific deregulation of potassium channels
[13] and electrical connections in fibroblasts grown in
culture.

It is well known that A�1-42 is more prone to
aggregation than A�1-40 and that its neurotoxicity is
considered to be one of the main causes of neuronal
damage. Prefibrillar aggregates of A�, but not mature
fibrils, can impair cell viability when added to cell cul-
ture media [50]. From our own study [17–19], we did
not find a significantly higher number of dead skin
fibroblasts after 24 h of treatment with 1.0 �M A�1-42
when compared with untreated cells. However, it seems
likely that A� alone is not responsible for the diag-
nostic discrimination we see in skin fibroblasts. More
likely, AD is a complex disease arising from the inter-
action of several imbalanced signaling pathways.

CONCLUSIONS

The proposed four measures for screening of AD
patients offer an exciting new opportunity to diag-
nose patients with a minimally invasive procedure. We
found quantifiable differences in human skin fibroblast
aggregation from AD patients when compared with AC

and non-ADD patients. At 48 h, we used a quantitative
measure, the average area per number of aggregates,
change to "to separate AD from AC/non-ADD. The
average area per number of aggregates appears to
increase with AD duration, while the number of migrat-
ing cells appears to decrease with AD duration. We
found that fractal and lacunarity curves, measuring the
complexity of fibroblasts dynamics, show significant
differences for the three groups.

Cell migration is impaired in diseased skin fibrob-
lasts (AD/non-ADD) when compared with AC. The
migration rate as a function of number of freely migrat-
ing cells shows non-overlapping clusters for AD,
non-ADD, and AC. The average number of migrating
cells is decreased with increasing duration of AD.

In conclusion, the four methods have a high accu-
racy (97%), a high sensitivity (98%), and are highly
specific (98.5%). It is noteworthy that the Coriell
Cell Repository samples were well characterized by
independent diagnostic criteria (autopsy, clinical diag-
nostic, genetics of family history) and that these results
have recently been replicated with a limited sample (4
AC, 5 AD) of fibroblasts taken from fresh biopsies.
Thus, these results show promising potential to diag-
nostically screen AD from age-matched controls and
non-Alzheimer’s dementia.
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